Copied to
clipboard

G = C23.8D18order 288 = 25·32

3rd non-split extension by C23 of D18 acting via D18/C9=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.8D18, C4⋊Dic93C2, (C2×C4).6D18, Dic9⋊C48C2, C22⋊C4.2D9, C92(C422C2), (C4×Dic9)⋊10C2, C18.7(C4○D4), (C2×C12).175D6, (C2×C36).2C22, (C22×C6).39D6, C6.77(C4○D12), C2.7(D42D9), (C2×C18).20C23, C3.(C23.8D6), C6.74(D42S3), C2.9(D365C2), C18.D4.3C2, (C22×C18).9C22, C22.40(C22×D9), (C2×Dic9).25C22, (C9×C22⋊C4).2C2, (C3×C22⋊C4).6S3, (C2×C6).177(C22×S3), SmallGroup(288,89)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C23.8D18
C1C3C9C18C2×C18C2×Dic9C4×Dic9 — C23.8D18
C9C2×C18 — C23.8D18
C1C22C22⋊C4

Generators and relations for C23.8D18
 G = < a,b,c,d,e | a2=b2=c2=1, d18=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d17 >

Subgroups: 316 in 90 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, C9, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C18, C18, C2×Dic3, C2×C12, C22×C6, C422C2, Dic9, C36, C2×C18, C2×C18, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×Dic9, C2×C36, C22×C18, C23.8D6, C4×Dic9, Dic9⋊C4, C4⋊Dic9, C18.D4, C9×C22⋊C4, C23.8D18
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, C422C2, D18, C4○D12, D42S3, C22×D9, C23.8D6, D365C2, D42D9, C23.8D18

Smallest permutation representation of C23.8D18
On 144 points
Generators in S144
(2 128)(4 130)(6 132)(8 134)(10 136)(12 138)(14 140)(16 142)(18 144)(20 110)(22 112)(24 114)(26 116)(28 118)(30 120)(32 122)(34 124)(36 126)(37 102)(38 56)(39 104)(40 58)(41 106)(42 60)(43 108)(44 62)(45 74)(46 64)(47 76)(48 66)(49 78)(50 68)(51 80)(52 70)(53 82)(54 72)(55 84)(57 86)(59 88)(61 90)(63 92)(65 94)(67 96)(69 98)(71 100)(73 91)(75 93)(77 95)(79 97)(81 99)(83 101)(85 103)(87 105)(89 107)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 127)(2 128)(3 129)(4 130)(5 131)(6 132)(7 133)(8 134)(9 135)(10 136)(11 137)(12 138)(13 139)(14 140)(15 141)(16 142)(17 143)(18 144)(19 109)(20 110)(21 111)(22 112)(23 113)(24 114)(25 115)(26 116)(27 117)(28 118)(29 119)(30 120)(31 121)(32 122)(33 123)(34 124)(35 125)(36 126)(37 84)(38 85)(39 86)(40 87)(41 88)(42 89)(43 90)(44 91)(45 92)(46 93)(47 94)(48 95)(49 96)(50 97)(51 98)(52 99)(53 100)(54 101)(55 102)(56 103)(57 104)(58 105)(59 106)(60 107)(61 108)(62 73)(63 74)(64 75)(65 76)(66 77)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 62 109 91)(2 43 110 108)(3 60 111 89)(4 41 112 106)(5 58 113 87)(6 39 114 104)(7 56 115 85)(8 37 116 102)(9 54 117 83)(10 71 118 100)(11 52 119 81)(12 69 120 98)(13 50 121 79)(14 67 122 96)(15 48 123 77)(16 65 124 94)(17 46 125 75)(18 63 126 92)(19 44 127 73)(20 61 128 90)(21 42 129 107)(22 59 130 88)(23 40 131 105)(24 57 132 86)(25 38 133 103)(26 55 134 84)(27 72 135 101)(28 53 136 82)(29 70 137 99)(30 51 138 80)(31 68 139 97)(32 49 140 78)(33 66 141 95)(34 47 142 76)(35 64 143 93)(36 45 144 74)

G:=sub<Sym(144)| (2,128)(4,130)(6,132)(8,134)(10,136)(12,138)(14,140)(16,142)(18,144)(20,110)(22,112)(24,114)(26,116)(28,118)(30,120)(32,122)(34,124)(36,126)(37,102)(38,56)(39,104)(40,58)(41,106)(42,60)(43,108)(44,62)(45,74)(46,64)(47,76)(48,66)(49,78)(50,68)(51,80)(52,70)(53,82)(54,72)(55,84)(57,86)(59,88)(61,90)(63,92)(65,94)(67,96)(69,98)(71,100)(73,91)(75,93)(77,95)(79,97)(81,99)(83,101)(85,103)(87,105)(89,107), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,127)(2,128)(3,129)(4,130)(5,131)(6,132)(7,133)(8,134)(9,135)(10,136)(11,137)(12,138)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,109)(20,110)(21,111)(22,112)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,96)(50,97)(51,98)(52,99)(53,100)(54,101)(55,102)(56,103)(57,104)(58,105)(59,106)(60,107)(61,108)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,62,109,91)(2,43,110,108)(3,60,111,89)(4,41,112,106)(5,58,113,87)(6,39,114,104)(7,56,115,85)(8,37,116,102)(9,54,117,83)(10,71,118,100)(11,52,119,81)(12,69,120,98)(13,50,121,79)(14,67,122,96)(15,48,123,77)(16,65,124,94)(17,46,125,75)(18,63,126,92)(19,44,127,73)(20,61,128,90)(21,42,129,107)(22,59,130,88)(23,40,131,105)(24,57,132,86)(25,38,133,103)(26,55,134,84)(27,72,135,101)(28,53,136,82)(29,70,137,99)(30,51,138,80)(31,68,139,97)(32,49,140,78)(33,66,141,95)(34,47,142,76)(35,64,143,93)(36,45,144,74)>;

G:=Group( (2,128)(4,130)(6,132)(8,134)(10,136)(12,138)(14,140)(16,142)(18,144)(20,110)(22,112)(24,114)(26,116)(28,118)(30,120)(32,122)(34,124)(36,126)(37,102)(38,56)(39,104)(40,58)(41,106)(42,60)(43,108)(44,62)(45,74)(46,64)(47,76)(48,66)(49,78)(50,68)(51,80)(52,70)(53,82)(54,72)(55,84)(57,86)(59,88)(61,90)(63,92)(65,94)(67,96)(69,98)(71,100)(73,91)(75,93)(77,95)(79,97)(81,99)(83,101)(85,103)(87,105)(89,107), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,127)(2,128)(3,129)(4,130)(5,131)(6,132)(7,133)(8,134)(9,135)(10,136)(11,137)(12,138)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,109)(20,110)(21,111)(22,112)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,96)(50,97)(51,98)(52,99)(53,100)(54,101)(55,102)(56,103)(57,104)(58,105)(59,106)(60,107)(61,108)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,62,109,91)(2,43,110,108)(3,60,111,89)(4,41,112,106)(5,58,113,87)(6,39,114,104)(7,56,115,85)(8,37,116,102)(9,54,117,83)(10,71,118,100)(11,52,119,81)(12,69,120,98)(13,50,121,79)(14,67,122,96)(15,48,123,77)(16,65,124,94)(17,46,125,75)(18,63,126,92)(19,44,127,73)(20,61,128,90)(21,42,129,107)(22,59,130,88)(23,40,131,105)(24,57,132,86)(25,38,133,103)(26,55,134,84)(27,72,135,101)(28,53,136,82)(29,70,137,99)(30,51,138,80)(31,68,139,97)(32,49,140,78)(33,66,141,95)(34,47,142,76)(35,64,143,93)(36,45,144,74) );

G=PermutationGroup([[(2,128),(4,130),(6,132),(8,134),(10,136),(12,138),(14,140),(16,142),(18,144),(20,110),(22,112),(24,114),(26,116),(28,118),(30,120),(32,122),(34,124),(36,126),(37,102),(38,56),(39,104),(40,58),(41,106),(42,60),(43,108),(44,62),(45,74),(46,64),(47,76),(48,66),(49,78),(50,68),(51,80),(52,70),(53,82),(54,72),(55,84),(57,86),(59,88),(61,90),(63,92),(65,94),(67,96),(69,98),(71,100),(73,91),(75,93),(77,95),(79,97),(81,99),(83,101),(85,103),(87,105),(89,107)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,127),(2,128),(3,129),(4,130),(5,131),(6,132),(7,133),(8,134),(9,135),(10,136),(11,137),(12,138),(13,139),(14,140),(15,141),(16,142),(17,143),(18,144),(19,109),(20,110),(21,111),(22,112),(23,113),(24,114),(25,115),(26,116),(27,117),(28,118),(29,119),(30,120),(31,121),(32,122),(33,123),(34,124),(35,125),(36,126),(37,84),(38,85),(39,86),(40,87),(41,88),(42,89),(43,90),(44,91),(45,92),(46,93),(47,94),(48,95),(49,96),(50,97),(51,98),(52,99),(53,100),(54,101),(55,102),(56,103),(57,104),(58,105),(59,106),(60,107),(61,108),(62,73),(63,74),(64,75),(65,76),(66,77),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,62,109,91),(2,43,110,108),(3,60,111,89),(4,41,112,106),(5,58,113,87),(6,39,114,104),(7,56,115,85),(8,37,116,102),(9,54,117,83),(10,71,118,100),(11,52,119,81),(12,69,120,98),(13,50,121,79),(14,67,122,96),(15,48,123,77),(16,65,124,94),(17,46,125,75),(18,63,126,92),(19,44,127,73),(20,61,128,90),(21,42,129,107),(22,59,130,88),(23,40,131,105),(24,57,132,86),(25,38,133,103),(26,55,134,84),(27,72,135,101),(28,53,136,82),(29,70,137,99),(30,51,138,80),(31,68,139,97),(32,49,140,78),(33,66,141,95),(34,47,142,76),(35,64,143,93),(36,45,144,74)]])

54 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E9A9B9C12A12B12C12D18A···18I18J···18O36A···36L
order122223444444444666669991212121218···1818···1836···36
size1111422241818181836362224422244442···24···44···4

54 irreducible representations

dim11111122222222244
type++++++++++++--
imageC1C2C2C2C2C2S3D6D6C4○D4D9D18D18C4○D12D365C2D42S3D42D9
kernelC23.8D18C4×Dic9Dic9⋊C4C4⋊Dic9C18.D4C9×C22⋊C4C3×C22⋊C4C2×C12C22×C6C18C22⋊C4C2×C4C23C6C2C6C2
# reps112121121636341226

Matrix representation of C23.8D18 in GL4(𝔽37) generated by

1400
03600
0010
001136
,
36000
03600
00360
00036
,
1000
0100
00360
00036
,
132900
01700
003128
0006
,
121800
312500
003617
0001
G:=sub<GL(4,GF(37))| [1,0,0,0,4,36,0,0,0,0,1,11,0,0,0,36],[36,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,1,0,0,0,0,36,0,0,0,0,36],[13,0,0,0,29,17,0,0,0,0,31,0,0,0,28,6],[12,31,0,0,18,25,0,0,0,0,36,0,0,0,17,1] >;

C23.8D18 in GAP, Magma, Sage, TeX

C_2^3._8D_{18}
% in TeX

G:=Group("C2^3.8D18");
// GroupNames label

G:=SmallGroup(288,89);
// by ID

G=gap.SmallGroup(288,89);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,590,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^18=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^17>;
// generators/relations

׿
×
𝔽